Background

- Image bitmaps are widely used in memory for fast accesses
 - Application: image processing and machine learning
 - High space and energy consumption in DRAM
- Non-volatile main memory (NVMM) is ideal for bitmaps
 - **Pros**: high density, near-zero stand-by power
 - **Cons**: high latency and energy for writes
- Bit-write reduction in NVMM is cost-inefficient
 - Bitmaps are hard to match the general-purpose data patterns
 - Different patterns due to various bitmap formats

Partial patterns in FPC [NANOARCH'14]

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Pattern</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Zero run</td>
<td>0x000000000 => 0x00</td>
</tr>
<tr>
<td>001</td>
<td>4-bit sign extended</td>
<td>0x000000002 => 0x12</td>
</tr>
<tr>
<td>010</td>
<td>1-byte sign extended</td>
<td>0xFFFFF000 => 0x2CC</td>
</tr>
<tr>
<td>011</td>
<td>Halfword Sign Extended</td>
<td>0x00001C23 => 0x31C23</td>
</tr>
</tbody>
</table>

RGB bitmap (three channels)

Gray bitmap (one channel)

Problem: inefficient bit-write reduction for bitmaps in NVMM (e.g., 94.2% compression ratio for FPC)

The SimCom Design

- Idea: leverage the **pixel-level similarity** and **error-tolerance** for approximate compression

- **Similarity-aware data compression**
 - Uncompressed Data
 - Partitioned Data
 - Compressed Data with base word, run
 - Compressed Data with LSB reuse

- **Adaptive compression scheme**
 - Uncompressed Data
 - Mode Selector
 - Quality Table
 - Normalized difference & compressed data

Comparisons: FNW [MICRO'09], FPC [NANOARCH'14], BDI [PACT'12], BiScaling [ISLPED'17]

Evaluation

- Write latency
- Energy